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Abstract –  

We report on efforts to automatically interpret remotely 
sensed radar and multispectral imagery using machine-
learned classifiers.  Specifically we utilize Support Vector 
Machine (SVM) learning techniques for L-band SAR, 
EO-1/ALI, and MODIS Imagery.  We share our 
qualitative and quantitative results thus far and discuss 
challenges experienced. 

Keywords: SVM, classification, remote sensing, 
polarimetric SAR, MODIS, ALI, disaster management 

1 INTRODUCTION 

Remotely sensed imagery has been found useful in a wide 
range of applications.   In particular, remotely sensed 
imagery is frequently used in monitoring, responding to, 
and mitigating natural disasters [Tralli et al.  2005, Chien 
et al. 2011a]. 

However, timely acquisition, processing, delivery and 
analysis of the remote sensed data is critical in these 
applications.   This paper discusses efforts to automate the 
interpretation of raw imagery into directly usable 
products.  Automation of this analysis step will allow for 
use of more data sources, enable more timely analysis, 
and enable automated monitoring to detect disasters as 
they evolve.  The end goal of such automated 
classification methods is to enable 24/7 automated imager 
interpretation, feeding directly into phenomenological 
models such as hydrological/flooding models or forest 
fire progression models to enable more precise tracking, 
prediction, and mitigation for natural disasters using an 
adaptive sensing sensorweb paradigm [Chien et al. 
2011b]. 

Specifically we utilize support vector machine learning 
(SVM) techniques in an attempt to automate analysis of 
the remotely sensed imagery.  In this paper we describe 
efforts to apply SVM for surface water extent mapping, 
vegetation mapping, and snow/ice extent mapping.  We 
describe results, related work, and future areas for work.  

2 SURFACE WATER EXTENT CLASSIFICATION 
OF MULTI-SPECTRAL MODIS DATA 

We have used SVM techniques and band ratio techniques 
to automatically classify MODIS flood extent maps of 
Thailand. We have developed algorithms, using data from 
MODIS bands 7, 2, and 1 (red, green, blue) available 
from the MODIS Rapid Response System [GSFC].  Both 
methods classify pixels into three categories: cloud, 
water, and land.  A permanent water mask was created by 
running a trained SVM (see below) over 4 relatively clear 
images from Thailand’s dry season, and keeping pixels 
that were classified as water in at least 2 of the scenes.  
This mask was used to screen out permanent water pixels. 

The first classification algorithm used was a simple 
thresholding technique to classify flooding, primarily 
used to request observations of Thailand flood targets 
with the EO-1 ALI instrument.  This algorithm created a 
composite image by iterating through images from 8 
MODIS overflights, filling in pixels that may be obscured 
by clouds in some images.  Clouds were identified as 
sufficiently bright pixels with the ratio g/b between low 
and high values.  Three color thresholds were chosen to 
mark the highest expected color values for a water pixel, 
Wr, Wg, and Wb.  The RGB score components were then 
computed as in eq. 1, 

�� � 255 � ������
� ��	  (1) 

where i is r, g, or b, and vi is the value of a pixel in one 
band.  The final score for each pixel was computed as S in 
eq 2. 


 �  max�0, ��� � �� � ��	 � ��	 (2) 

\where d is the age of the pixel data in days and k is a 
decay factor. Finally, all pixels with score exceeding a 
user-specified threshold were classified as flooded. The 
exact values of these parameters were tuned based on 
manual experimentation. 

The second classification algorithm was a support vector 
machine (SVM) with a 2nd-degree polynomial kernel, 
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trained with the Pixellearn [MLIA] program on manually 
labeled MODIS data.  A confusion matrix against 
manually labeled data is shown in Tab. 1.  The SVM 
identified 96.8% of all labeled pixels correctly. 

Table 1: Confusion Matrix for MODIS SVM  trained on 
scene from 2010-078 

 Background Land Water Cloud 

Background 0 4372895 255495 510805 

Land 0 3260 97 10 

Water 0 126 2903 0 

Cloud 0 64 0 2706 

 

Both algorithms were run for the composite image shown 
in Fig. 1, which is the image generated by the 
thresholding algorithm from 8 overflights prior to the day 
2010-308.  Fig. 2 shows the results for both the SVM and 
thresholding algorithms. 

The thresholding algorithm generated a composite image 
using data captured by both Terra and Aqua, from 2010-
305 to 2010-308, and attempts to screen out cloudy pixels 
(Figure 2 bottom).  The SVM was run on this composite 
image to provide a more equal comparison (Fig. 2 top).  It 
can be seen that the thresholding algorithm left in pixels 
that the SVM correctly classified as cloudy, and classified 
them as land instead.  It also generated more false positive 
flood pixels (especially in western Thailand) and 
identified more pixels as flooded overall.  The SVM 
classified 0.7% of the pixels as flooded, while the 
thresholding counted 1.0% as flooded. 

 

Figure 1: Composite of 8 MODIS 721 images 

 

Figure 2: SVM classification results (top) and 
thresholding results (bottom); blue: flooded, green: 

land, white: cloud & masked out areas 
 
 

3 SURFACE WATER EXTENT CLASSIFICATION 
OF MULTI-SPECTRAL ALI DATA 

We have used SVM techniques to learn classifiers to 
automatically detect flooded areas in Earth Observer One 
(EO-1) Advanced Land Imager (ALI) data.  Several 
scenes of ALI data from regions of Thailand and Siem 
Reap/Tonle Sap area were collected and hand labeled for 
water (large lakes or catchments), developed areas, 
undeveloped ground, cloud, and finally cloud shadowed 
regions.  In the interest of producing products that may be 
useful in flood mitigation, labels for ground and water 
were chosen aggressively through partially clouded 
observations.  Water labeling was assisted by first 
generating a binary image of a threshold of ratio of ALI 
bands nearest 550nm and 860nm, and using this map to 
label easily identifiable water structures (river, ponds, 
lakes).   

Only a small portion of ALI scenes were labeled as such – 
the remainder of the scenes contained large swaths of 
easily identifiable features (clouds, ground, water bodies) 
that remained unlabelled and were treated as a hold-out 
set in qualitative evaluation. 
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For all flood classification efforts for ALI, a feature set of 
all possible band ratios (excluding reciprocals) of the 9 
multispectral bands was utilized (resulting in 36 ratios).   

Labeling, training, validation (quantitative and 
qualitative) and kernel-parameter selection, was done 
through the Pixellearn tool [MLIA].  Cross-validation 
accuracy was used as the basis for a classifier score in a 
typical grid search for parameters and kernels.  Kernels 
included linear, polynomial (inhomogeneous, across 
several small, prime degrees) and RBF with varying 
gamma.  Search was run on each labeled scene separately 
– the optimal selection of parameters and kernel varied.  
In some cases where labels were limited, the linear kernel 
proved optimal or as optimal as more complex kernels, 
while in others RBF would achieve the best cross-
validation accuracy.  However, often for the linear kernel 
the generalization to the remainder of unlabelled scene 
was poor, while selecting a particular RBF 
parameterization, training and validating across several 
scenes, would show poor generalization across scenes.  
Through manual and qualitative selection, a polynomial 
kernel of degree 5 and a cost factor (C) of 300 was chosen 
for best generalization to unlabelled data across several 
scenes. 

Testing against a hand labeled hold-out set of obvious 
features (seen in Fig. 3) yields the fairly good accuracies 
as seen in Tab. 2.  Unfortunately, we have not been able 
to perform direct comparison of these results against 
ground truth measurements. 

Table 2. Confusion matrix of single hold-out scene (Siem 
Reap, 2010-293) 

            Background  cloud  water  land  shadow  urban total  cloud  water  land  shadow  urban 
Background 0 756566 1076468 1066693 317514 0 3217241 24% 33% 33% 10% 0%
     cloud 0 546 0 0 0 0 546 100% 0% 0% 0% 0%
     water 0 25 3754 48 111 0 3938 1% 95% 1% 3% 0%
      land 0 0 0 990 65 0 1055 0% 0% 94% 6% 0%
    shadow 0 0 0 12 385 0 397 0% 0% 3% 97% 0%
     urban 0 0 0 97 1 0 98 0% 0% 99% 1% 0%  

 

Figure 3: Three views of ALI scene over Siem Reap 
(EO1A1270512010293110PF). Left: an RGB composite. 

Center: Band-9 with hold-out cross-validation labels.  
Right: SVM classification results.  Color map: blue-

water, green-land, grey-cloud, orange-shadow, 
(darkblue-invalid). 

4 AUTOMATED CLASSIFICATION OF L-BAND 
SAR DATA INTO VEGETATION CLASSES 

The feasibility of generating a vegetation classification 
scheme using our real-time L-band SAR data has been 
studied using a multi-class support vector machine 
(SVM).  Using UAVSAR data collected over forested and 
wetland areas of Maine and Vermont, spread out over 
approximately 12 days of varying weather, we trained a 
support vector machine using land cover maps from 
NLCD2001 with classes collapsed down to 7 coarser 
vegetation classes: dense (forest), herbaceous wetland, 
forested wetland, medium (shrub), low (grass), bare land 
and water.  Approximately 5000 training samples (pixels) 
were chosen at random across the Maine dataset and 
included features of backscatter for HH, VV, HV, HHVV 
phase, 7x7 pixel averages 

Table 3. Confusion matrix for vegetation classification vs 
NLCD2001 condensed classes, evaluated over ~15 

30kmx30km images from Maine and Vermont 

 

 and variance of some of these quantities for 19 total 
features.  Training yielded ~900 support vectors using a 
Guassian radial basis kernel.  

Tab. 3 shows fairly poor classification performance when 
compared against NLCD2001 data, with the best accuracy 
at 54% for the water class of which 19% were 
misclassified as woody wetland, while dense vegetation 
had the next best accuracy of 46%, with 21% 
misclassified as herbaceous wetland.  These figures are 
fairly underwhelming, however qualitative inspection of 
results look more promising and draw doubt upon our 
validation set.  Fig. 4a and 4b show the contrast in 
NLCD2001 ground truth to classifier output, while optical 
imagery in Fig. 4c shows a better visual correlation with 
the classifier output – of note is the abundance of light 
vegetation (open spaces or grassy areas, brown) consistent 

Class i fier resul ts :
NLCD 1000 2000 2100 2200 3000 4000 count
water 1000 54% 4% 2% 19% 11% 10% 682,069      
dense  veg (fores t) 2000 0% 46% 21% 12% 11% 10% 16,382,691 
wetland (herbaceous ) 2100 1% 31% 30% 17% 12% 10% 1,936,352   
wetland (woody) 2200 6% 18% 17% 24% 17% 19% 478,129      
moderate  veg (shrub) 3000 3% 26% 15% 13% 20% 23% 450,214      
l i ght veg (gras s ) 4000 8% 19% 10% 18% 19% 26% 51,743        
urban 5000 5% 16% 8% 27% 23% 21% 323,258      
urban (low intens i ty) 5100 6% 19% 9% 21% 22% 22% 519,914      
developed (open space) 5200 3% 28% 13% 16% 20% 20% 775,630      
 Total  Accuracy:  8668968 / 19981198 (0.433856)
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with the output, opposed to the majority of dense forest 
indicated in the ground truth in Fig. 4a.  We suspect the 
NLCD2001 data is ultimately too noisy for training and 
validation purposes either because of age, 
resolution/aliasing artifacts (NLCD2001 is 30m resolution 
while UAVSAR is better than 10m allowing for 
individual tree crown identification) or other general 
fidelity problems.  Future work will identify better land 
cover data and investigate improvements in cross-
validation, while at the moment we find it interesting that 
with this potentially noisy dataset we obtain results that 
compare well, at least qualitatively with more recent 
optical data.  

 

Figure 4.  Vegetation classification data for scene in 
Maine, collected Sept 2009.  (a) NLCD2001 land cover 

map, (b) classification results, (c) optical imagery 
courtesy Google Earth.  Color scheme for (a) and (b), 

black: water, dark-gray: dense veg (including wetlands), 
gray: moderate veg, light-gray: light-veg, white: 

developed areas 

Finally we would note that the resulting SVM, with ~900 
support vectors would be too complex to be run on an in-
flight platform.  We anticipate replacing noisy training 
data with more accurate data would result in a reduced set 
and better cross-validation results.  Other approaches to 
reach a feasible computation time would include a 
hardware based SVM evaluator or reduced set SVM 
[Tang and Mazzoni 2006] or progressive SVMs 
[Wagstaff et al. 2010].   

5 SNOW/ICE CLASSIFICATION OF L-BAND SAR 
DATA  

We again employ a support vector machine to classify 
pixels of ground projected data using the same feature set 
as presented in section 5 for vegetation classification, but 
with target classes of snow or ice versus land versus 
water.  Data collected over Iceland’s Hofsjokull on Jun 
12th 2009 together with various optical remote sensing 
data including Landsat7 taken May 16 2009 (Fig. 5a) to 
serve as our training and validation data, and ground 
truth.  Given the time of year, and large temporal 
separation between the optical and UAVSAR data 
collection, we generated a conservative hand labeled 
training and validation set (Fig. 5b), taking into 
consideration late-summer data to find a year-round snow 
pack.  Training on ~300 randomly sampled pixels from 

the hand-labeled set resulted in the classification image of 
Fig. 6, and the confusion matrix in Tab. 4. 

 

Figure 5. On left (a) Landsat7 band 1 image collected 
2009-05-16, snow and ice from Hofsjokul on right, and 
seasonal snow on volcanic peak at center top.  On right 
(b) is a conservative hand-labeling, water: blue, land: 

orange, snow/ice: gray, red: no-data. 

 

Figure 6. Result of Snow/Ice SVM classifier: pink: land, 
dark-gray: water, gray-blue: snow/ice 

Table 4. Confusion matrix of snow/ice classifier against 
hand labels, data collected Jun 12th 2009. 

 

Overall classification accuracies (>90%) are much 
improved as compared to the vegetation classifier and the 
number of support vectors dramatically reduced (~50) 
potentially allowing for in-flight evaluation on traditional 
processor architectures.   

6 RELATED AND FUTURE WORK, 
CONCLUSIONS 

SVM has been used in a number of previous projects to 
classify remotely sensed imagery.  SVM classifers were 
learned on the ground and uploaded to classify cryosphere 
events using Hyperion data for the Earth Observer One 
mission [Castano et al. 2006].  Mazzoni and others 
[Mazzoni et al. 2007a, 2007b] used SVM to automatically 
classify atmospheric features in MODIS/MISR data.  

water ice land   count
no label 7% 10% 83% 16.7M
water 91% 3% 6% 145884
ice 3% 90% 7% 440706
land 1% 2% 96% 311201
 Total Accuracy:  829007 / 897791 (0.923385)
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Detection of sulfur springs against an ice backdrop 
[Mandrake et al. 2009] has been demonstrated with some 
success with Hyperion data.  Similar techniques were 
applied to Mars Odyssey THEMIS data [Castano et al. 
2007].   

In further work, we would like to apply SVM to learn 
smoke products from ALI and MODIS imagery for forest 
fires.  We would also like to apply SVM techniques to 
learn ash plume detection methods.  It is expected that 
both of these problems will require the inclusion of 
texture features to achieve reasonable accuracy. 

We have presented a number of applications of SVM 
learning to learn automatic classifiers for remotely sensed 
data.  Data sets used include MODIS, ALI, and UAVSAR 
L-band SAR instrument data.  Applications include 
surface water extent mapping, vegetation cover 
classification, and cryosphere feature classification. 
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